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Abstract. A Hamiltonian is explicitly exhibited, whose equations of motion yield the
time evolution of then zeros, zj (t), of a polynomial of degreen in z, Pn(z, t) =
zn + ∑n

m=1 cm(t)zn−m, when its coefficientscm(t) oscillate, cm(t) = c
(+)
m exp(iωmt) +

c
(−)
m exp(−iωmt), or evolve in some other Hamiltonian manner.

1. Introduction

Consider the polynomial of degreen in z,

Pn(z, t) = zn +
n∑

m=1

cm(t)zn−m (1.1)

and assume that its coefficientscm(t) oscillate over time,

cm(t) = c(+)
m exp(iωmt) + c(−)

m exp(−iωmt). (1.2)

It is then rather evident [1] that the evolution over time of the zeroszj (t) of this
polynomial,

Pn[zj (t), t ] = 0 j = 1, . . . , n (1.3)

is Hamiltonian, namely that there exists a Hamiltonian functionH(z, v) such that the motion
of the n zeroszj (t) is given by the Hamiltonian equations

żj = ∂H(z, v)/∂vj j = 1, . . . , n (1.4a)

v̇j = −∂H(z, v)/∂zj j = 1, . . . , n (1.4b)

(with appropriate initial conditions, see below). The purpose and scope of this paper is to
provide (in the following section) anexplicit representation of the HamiltonianH(z, v).
The next section outlines some extensions, exhibits some simple examples (forn = 2 and
n = 3), and discusses briefly the relations of the results of this paper with some recent
findings [2]. At the end we have added for completeness an appendix which reviews some
standard facts on Hamiltonian systems and symplectic geometry.

† Visiting professor (Permanent position: Professor of Theoretical Physics, University of Rome I ‘La Sapienza’;
on leave while serving as Secretary General, Pugwash Conferences on Science and World Affairs, Geneva London
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2. The Hamiltonian H(z, v)

The time evolution (1.2) of the coefficientscm(t) is clearly Hamiltonian, corresponding to
the equations

ċm = ∂H̃ (c, p)/∂pm m = 1, . . . , n (2.1a)

ṗm = −∂H̃ (c, p)/∂cm m = 1, . . . , n (2.1b)

with

H̃ (c, p) = 1

2

n∑
m=1

(p2
m + ω2

mc2
m) (2.2)

and to the initial conditions

cm(0) = c(+)
m + c(−)

m (2.3a)

ċm(0) = iωm(c(+)
m − c(−)

m ). (2.3b)

The n coefficientscm are related to then zeroszj by the algebraic relations implied by the
equation

zn +
n∑

m=1

cmzn−m =
n∏

j=1

(z − zj ). (2.4)

Hence, in the framework of the Hamiltonian formalism, the transformation from then

coordinatescm to the n coordinateszj is a point transformation; there therefore existn

canonical momentavj such that the transformation from the 2n coordinates and momenta
cm, pm to the 2n coordinates and momentazj , vj is canonical, entailing that the time
evolution of the quantitieszj (t) and vj (t) is given by the Hamiltonian equations (1.4)
with

H(z, v) = H̃ [c(z), p(z, v)] (2.5)

of course withH̃ (c, p) given by (2.2). To obtainH(z, v) one must therefore find the
expressions of the (old)canonical coordinatescm and momentapm in terms of the (new)
canonical coordinateszj and momentavj .

The expressions of the coefficientscm of a polynomial in terms of its zeroszj are well
known, being directly implied by (2.4):

c1 = −
n∑

j=1

zj (2.6a)

c2 =
n∑

j,k=1;j 6=k

zj zk (2.6b)

c3 = −
n∑

j,k,`=1;j 6=k,k 6=`,` 6=j

zj zkz` (2.6c)

and so on.
The expressions of the canonical momentapm in terms of the coordinates and momenta

zj , vj is characterized by the requirement that the transformation(c, p) → (z, v) be
canonical, namely by the condition

{cm, pm′ } = δmm′ (2.7)
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with the standard definition of the Poisson bracket,

{cm, pm′ } ≡
n∑

j=1

{
∂cm

∂zj

∂pm′

∂vj

− ∂cm

∂vj

∂pm′

∂zj

}
. (2.8)

This entails, in our case,
n∑

j=1

∂cm(z)

∂zj

∂pm′(z, v)

∂vj

= δmm′ . (2.9)

It is therefore clear thatpm is linear inv,

pm =
n∑

j=1

Cmj (z)vj + rm(z) (2.10)

whererm(z) is an arbitrary function ofz. In the framework of symplectic geometry, it is
appropriate (see the appendix) to chooserm(z) = 0. Clearly (2.10) implies

∂pm/∂vj = Cmj (z) (2.11)

and since obviously

∂cm/∂cm′ = δmm′ =
n∑

j=1

∂cm(z)

∂zj

∂zj (c)

∂cm′
(2.12)

it is, moreover, clear from (2.9), (2.11) and (2.12) that

Cmj (z) = ∂zj (c)/∂cm. (2.13)

To calculate the quantities (2.13), it is convenient to differentiate (2.4) with respect to
cm. This yields

zn−m = −
n∑

`=1

(∂z`/∂cm)

n∏
k=1,k 6=`

(z − zk). (2.14)

Hence, by settingz = zj , one immediately obtains the (presumably well known) formula

∂zj/∂cm = −zn−m
j /P ′

n(zj ) (2.15)

with

P ′
n(zj ) =

n∏
k=1,k 6=j

(zj − zk). (2.16)

The explicit expression ofpm in terms ofzj andvj therefore reads,

pm = −
n∑

j=1

vj z
n−m
j /P ′

n(zj ). (2.17)

Hence, the explicit expression of the HamiltonianH(z, v) reads (from (2.2) and (2.5))

H(z, v) = 1

2

n∑
j,k=1

gjk(z)vjvk + 1

2

n∑
m=1

ω2
mc2

m(z) (2.18a)

with

gjk(z) = {[1 − (zj zk)
n]/(1 − zj zk)}/[P ′

n(zj )P
′
n(zk)] (2.18b)

of course with (2.16) and the coefficientscm(z) given by (2.6).
Two final remarks.
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• Clearly the Hamiltonian (2.18) (with (2.16) and (2.6)) is completely integrable, and
possesses then integrals of motion in involution

Hm(z, v) = 1
2{[pm(z, v)]2 + ω2

m[cm(z)]2} m = 1, . . . , n (2.19)

with pm(z, v) andcm(z) given by (2.17) and (2.16) and by (2.6).
• The time evolution of then zeroszj (t) of the polynomial (1.1) with (1.2) is given by

the specific solution of the Hamiltonian equations of motion (1.4) with (2.18) (and (2.16)
and (2.6)),characterized by the initial conditions (1.3), which clearly entail that then initial
valueszj (0) are then zeros of the polynomialPn(z, 0) (see (1.1); of course with (2.3a)),
and then initial valuesvj (0) are the solutions of the system ofn linear equations

n∑
j=1

vj (0)[zj (0)]n−m/P ′
n[zj (0)] = −iωm[c(+)

m − c(−)
m ] m = 1, . . . , n.

(2.20)

Here P ′
n[zj (0)] is given by (2.16) (att = 0), or equivalently (see (1.1) and (2.4)) by the

expression

P ′
n(z, t) = ∂Pn(z, t)/∂z = nzn−1 +

n∑
m=1

(n − m)cm(t)zn−m (2.21)

evaluated att = 0 andz = zj (0). Note that (2.20) corresponds to (2.17) via (2.3b), since
(2.1a) with (2.2) entail

pm = ċm. (2.22)

An alternative assignment of the initial conditions provides the values of the ‘initial
velocities’ żj(0). They are given by the expressions

żj(0) = −i

{ n∑
m=1

ωm[c(+)
m − c(−)

m ][zj (0)]n−m

}/
P ′

n[zj (0)] (2.23)

which are obtained by time differentiating (2.4) and then settingt = 0 andz = zj (0) (and
using (2.3b)). For P ′

n[zj (0)] one can use here either expression (2.16) or (2.21).

3. Extensions, examples and discussion

It is clear that the treatment given above is immediately extendable, with obvious
modifications, toany time evolution of the coefficientscm(t) (other than (1.2)) which is
Hamiltonian.

While it should be emphasized that the interest (if any) of the results reported above
rests on the possibility of treating the case of arbitrary (positive integer)n > 2, we display
below the formulae for the simple cases ofn = 2 andn = 3.

For n = 2,

H(z, v) = 1
2[(v1 − v2)

2 + (z1v1 − z2v2)
2]/(z1 − z2)

2 + 1
2ω2

1(z1 + z2)
2 + 1

2ω2
2(z1z2)

2 (3.1)

ż1 = [v1 − v2 + (z1v1 − z2v2)z1]/(z1 − z2)
2 (3.2a)

ż2 = −[v1 − v2 + (z1v1 − z2v2)z2]/(z1 − z2)
2 (3.2b)

v̇1 = (v1 − v2)[v1 − v2 + (z1v1 − z2v2)z2]/(z1 − z2)
3 − ω2

1(z1 + z2) − ω2
2z1z

2
2 (3.3a)

v̇2 = (v1 − v2)[v1 − v2 + (z1v1 − z2v2)z1]/(z1 − z2)
3 − ω2

1(z1 + z2) − ω2
2z

2
1z2. (3.3b)
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Note that these equations entail the relations

v̇1 = −[(v1 − v2)/(z1 − z2)]ż2 − ω2
1(z1 + z2) − ω2

2z1z
2
2 (3.4a)

v̇2 = −[(v1 − v2)/(z1 − z2)]ż1 − ω2
1(z1 + z2) − ω2

2z
2
1z2 (3.4b)

and the second-order equations

z̈j + ω2
1zj = [2żj żj+1 + (ω2

2 − 2ω2
1)zj zj+1]/(zj − zj+1) j = 1, 2 mod(2). (3.5)

For n = 3,

H(z, v) = 1

2

3∑
j=1

(1 + z2
j + z4

j )v2
j /[(zj − zj+1)

2(zj − zj+2)
2]

−
3∑

j=1

(1 + zj+1zj+2 + z2
j+1z

2
j+2)vj+1vj+2/[(zj+1−zj+2)

2(zj −zj+1)(zj −zj+2)]

+ 1
2[ω2

1(z1 + z2 + z3)
2 + ω2

2(z1z2 + z2z3 + z3z1)
2 + ω2

3(z1z2z3)
2] (3.6)

z̈j + ω2
1zj =

3∑
k=1,k 6=j

[2żj żk + (ω2
2 − 2ω2

1)zj zk]/(zj − zk)

+(−3ω2
1 + 3ω2

2 − ω2
3)z1z2z3/[(zj − zj+1)(zj − zj+2)] j = 1, 2, 3. (3.7)

In the last two equations the indexj is defined mod(3).
The connection between the findings reported in this paper and those entailed by the

approach of [1] can easily be traced to the fact that the polynomialPn(z, t), see (1.1) and
(1.2), satisfies the linear partial differential equation[

∂2/∂t2 +
n∑

r=0

brz
r∂r/∂zr

]
Pn(z, t) = 0 (3.8)

with the n + 1 coefficientsbr defined by the linear triangular system
n−m∑
r=0

br(n − m)!/(n − m − r)! = ω2
m m = n, . . . , 1 (3.9a)

n∑
r=0

br/(n − r)! = 0. (3.9b)

It is easily seen that the condition that (3.8) be a second-order partial differential equation
(PDE) (namely, thatbr = 0 for r > 2) entails, via (3.9), the formula

ω2
m = −m[b1 + (2n − m − 1)b2] (3.10)

which is consistent, via (1.2) and up to trivial notational changes, with equation (4.13) of
[2]. Note that the condition that (3.8) be asecond-orderPDE is necessary and sufficient to
guarantee [1] that the ‘Newtonian’ second-order equations,

z̈j = Fj (z, ż) (3.11)

entailed by the Hamiltonian equations (1.4), feature ‘forces’Fj that contain only ‘one-body’
and ‘two-body’ terms,

Fj (z, ż) = f (1)(zj , żj) +
n∑

k=1,k 6=j

f (2)(zj , zk, żj, żk). (3.12)

Indeed, the diligent reader may easily check that, forn = 3, (3.10) entails the constraint

ω2
3 − 3ω2

2 + 3ω2
1 = 0 (3.13)
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which is indeed necessary and sufficient to eliminate the ‘three-body’ forces from the right-
hand side of (3.7).

Up to now we have omitted to specify whether the context of our treatment was real or
complex. It is in fact obvious that the most appropriate context to investigate the zeros of a
polynomial is complex. Indeed all that has been written above is applicable in a completely
complex context, that is assuming not only that the quantitiescm, pm andzj , vj are complex,
but that even the ‘frequencies’ωm are complex. In such a case, of course, the coefficients
cm(t) would not merely oscillate over time, but might diverge to infinity or converge to zero
as t → ±∞. The corresponding behaviour in such cases of the zeroszj (t) is discussed in
appendix A of [2].

The results reported above yield, via such complexification, a large family ofintegrable
Hamiltonian models, which are naturally interpretable as describing the motion ofn

interacting particlesin the plane, whose evolution is determined byrotation-invariant
equations of motion of Newtonian type [3]. These models include all the Hamiltonian
models introduced in [2], which are characterized by the restriction to feature only one-
body and two-body interparticle forces.

We end this paper with a remark that has been added at the request of a referee.
Whenever two zeros coincide, the canonical transformation discussed in this paper becomes
singular, as evidenced by the vanishing of the denominator on the right-hand side of (2.18b).
If the motion of the zeros is interpreted as that of particles in the context of a (solvable)
many-body problem, this phenomenon has a natural interpretation as a two-body collision,
after which the Hamiltonian motion may or may not be continued, depending on the context
[1–3].

Appendix

The expression of the canonical momentapm in terms of the coordinates and momenta
(zj , vj ) is characterized by the requirement that the transformation(c, p) → (z, v) be
canonical, namely by the condition

n∑
m=1

dcm ∧ dpm =
n∑

j=1

dzj ∧ dvj (A.1)

(conservation of the canonical symplectic 2-form). This entails that there exists a function
S(c, v) such that

n∑
m=1

pm dcm +
n∑

j=1

zj dvj = dS(c, v) (A.2a)

∂S

∂cm

= pm

∂S

∂vj

= zj . (A.2b)

In our case,z depends only onc and so we obtain

S(c, v) =
n∑

j=1

zjvj + S0(c) (A.3)

hence

pm =
n∑

j=1

∂zj

∂cm

vj + ∂S0

∂cm

. (A.4)
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One can chooseS0 arbitrarily. In particular, one can setS0 = 0. In this manner, one lifts
the point transformationc → z to a contact transformation(i.e. (c, p) → (z, v) not only
preserves the symplectic 2-form but also the Liouville 1-form,

∑
m pm dcm = ∑

j vj dzj ).

Definition. A Hamiltonian systemH on (R2m,
∑m

j=1 dxj ∧ dpj ) defines a Newtonian
dynamics if, given Hamilton’s first-order equations

ċm = ∂H

∂pm

(A.5a)

ṗm = − ∂H

∂cm

(A.5b)

the solution (cm(t), pm(t)) with initial conditions (cm(0), pm(0)) corresponds to the unique
solution (cm(t), ċm(t)) of a system of second-order differential equations

c̈m = fm(c, ċ) (A.6)

with initial values (cm(0), ċm(0)), where

ċm(0) = ∂H

∂pm

(c(0), p(0)). (A.7)

The vectorf = (fm) is then called the force.

Two remarks are now in order.
(i) Different Hamiltonian systems may lead to the same Newtonian dynamics (A.6).
(ii) The simplest Newtonian case is given by the natural Hamiltonian

H = 1

2

n∑
m=1

p2
m + V (c) (A.8)

which yields

ċm = pm ṗm = − ∂V

∂cm

(A.9)

hence

c̈m = − ∂V

∂cm

(c). (A.10)

In this case the force does not depend on the velocity.
We conclude with two propositions on Newtonian dynamics and contact transformations.

Proposition 1. Let H be a Hamiltonian system of type

H = 1

2

n∑
i,j=1

gij (c)pipj + V (c) (A.11)

with the matrixG = (gij ) invertable. ThenH defines a Newtonian dynamics.

Proof. Hamilton’s equations yield

ċ = G(c)p (A.12a)

hence

p = G−1(c)ċ. (A.12b)
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This entails, from (A.12a) and (A.5b),

c̈m =
n∑

j,k=1

∂gmj

∂ck

ċk(G−1c)j

−
n∑

j=1

gmj (c)

[
1

2

n∑
k,l=1

∂gkl(c)

∂cm

(G−1(c)ċ)k(G−1(c)ċ)l + ∂V (c)

∂cm

]
. (A.13)

�

Proposition 2. A Hamiltonian system of type (A.11) gets transformed into another
Hamiltonian system of the same type under a contact transformation.

Proof. Such a transformation is

(c, p) → (z, v) z = z(c) pm =
n∑

j=1

∂zj

∂cm

vj (A.14)

where the matrixT, of elementstjm = ∂zj/∂cm, is invertable. Then one may write

H = 1
2〈Gp, p〉 + V (c) (A.15)

p = Tv (A.16)

H = 1
2〈 tTGTv, v〉 + V (c(z)). (A.17)

The matricesG andT are invertable, hencetTGT is also invertable. �
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